
Sample of Homework Three 

Jack L. Vevea 

Part One: Linear regression 

1. Here is a good scatterplot showing Peabody conditioned on Raven for my sample: 

 

I produced that plot using the following R commands: 

> attach(JackStatlab) 

> RAinc <- .05* (max(CTRA)-min(CTRA)) 

> PBinc <- .05*(max(CTPEA)-min(CTPEA)) 

> par(pin=c(6,4)) 

> plot(CTRA, CTPEA, main="Regression of Peabody on Raven", 

+     xlab="Raven Scores", ylab="Peabody Scores", 

+     xlim=c(min(CTRA)-RAinc,max(CTRA)+RAinc), 

+     ylim=c(min(CTPEA)-PBinc,max(CTPEA)+PBinc)) 

> abline(lm(CTPEA~CTRA)$coef) 
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2. The estimated linear regression equation has an intercept of 59.049 and a slope of 
0.732. I determined that by entering “lm(CTPEA~CTRA)” in R.  

3. (The regression line has already been added to the plot.) 
4. The slope of 0.732 indicates that, according to the model, the conditional mean of 

Peabody increases by 0.732 points for every 1-point increase in Raven. 
5. I conducted the hypothesis test about the slope in two ways: first, via the F statistic and 

second via the t statistic. (I know that these two are equivalent, but wanted to verify 
that result for myself.) For the F statistic, I first saved the regression output: “regout 
<- lm(CTPEA~CTRA)”. Then I entered “anova(regout)”, which produced the 
following output: 
 

Analysis of Variance Table 

 

Response: CTPEA 

          Df Sum Sq Mean Sq F value    Pr(>F)     

CTRA       1 2189.0 2189.00  15.541 0.0002616 *** 

Residuals 48 6760.8  140.85                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

The p value associated with the F(1, 48) statistic is .0002616, which is lower than my 
criterion of .05, so I reject the null hypothesis and conclude that the slope is not equal to 
zero.  
 
I also used the following code to conduct the test using a t statistic: 
“summary(regout)”, which produced the following output: 

 
 

Call: 

lm(formula = CTPEA ~ CTRA) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-26.520  -8.273  -1.516   6.915  42.459  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  59.0490     5.9663   9.897 3.55e-13 *** 

CTRA          0.7319     0.1856   3.942 0.000262 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 11.87 on 48 degrees of freedom 

Multiple R-squared:  0.2446,    Adjusted R-squared:  0.2288  

F-statistic: 15.54 on 1 and 48 DF,  p-value: 0.0002616 

 

The t(48) statistic in that output has a p value of .000262 (which is the same as the 
result from the F test, rounded to six decimal places). Hence, the conclusion about the 
slope is the same, as it must be because the tests are exactly equivalent. 
 



6. The assumptions that must be satisfied for those tests to be valid are: 
a. The relationship must be linear. 
b. The errors must be independent. 
c. The vertical variability of errors about the regression line should be the same 

through the range of fitted values. 
d. The errors must be normally distributed. 

 
7. I assessed the linearity assumption first by examining the scatterplot that I produced 

earlier. It does seem plausible that the relationship is linear. I also produced the 
following plot of residuals against fitted values: 
 

 
That plot was produced using the following R code: 
 

> resxinc <- .05 * (max(regout$fit)-min(regout$fit)) 

> resyinc <- .05 * (max(regout$res)-min(regout$res)) 

> plot(regout$fit, regout$res, main="Residuals vs. Fitted Values 

from\n Regression of Peabody on Raven", 

+    xlab="Fitted Conditional Means", ylab="Residuals", 

+    xlim=c(min(regout$fit)-resxinc,max(regout$fit)+resxinc), 

+    ylim=c(min(regout$res)-resyinc,max(regout$res)+resyinc)) 
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I see no evidence of a curvilinear relationship in the residuals plot, so by this criterion it 
also appears that the relationship is linear. 
 
The independence of the errors amounts to the same thing as arguing that the Peabody 
scores themselves are independent. I cannot assess that by looking at the data, but I am 
comfortable with the assumption because it seems unlikely that a large study like this 
one would have collected Peabody data in a way that violated independence. 
 
I evaluated the homoscedasticity assumption (i.e., that the vertical variability of errors 
about the regression line should be the same through the range of fitted values) using 
the same residuals plot that appears above. Although there may be a slight tendency for 
the variability of the residuals to increase toward the right side of the plot, the increase 
is not large. Given the overwhelming evidence against the null hypothesis about the 
slope, I’m not too worried about this assumption; if there is heteroscedasticity, it is 
slight enough that it probably wouldn’t represent a reasonable explanation for the large 
values of the test statistics. 
 
I evaluated the assumption of normally distributed errors by considering the normality 
of the residuals. Both in a stem-and-leaf plot… 
 

> stem(regout$res) 

 

  The decimal point is 1 digit(s) to the right of the | 

 

  -2 | 74 

  -1 | 3322110 

  -0 | 98888755544442221111 

   0 | 00235677789 

   1 | 112335569 

   2 |  

   3 |  

   4 | 2 

 

...and in a normal Quantile-Quantile plot… 
 

> qqnorm(regout$res, main="Normal Quantile-Quantile Plot of Residuals") 

> qqline(regout$res) 



 
...it appears reasonable to assume that the residuals (and, by implication, the errors) do 
not dramatically depart from a normal distribution. Hence, I am comfortable with the 
assumption that the errors are normally distributed. 
 
 

Part Two: Using simulation to learn about probability distributions 
 
I am not going to provide an example of this task for the exponential distribution mentioned in 
the homework because it would give away the findings that I want you to discover for yourself. 
Instead, I am doing the exercise using a chi-square distribution and varying the degrees of 
freedom (df). It is very important that you realize my example here uses a different 
distribution from the one you are supposed to use! Wherever you see “rchisq” in my 

example, you should be using “rexp”. 
 
I found it useful to construct a table of the different df values I tried, along with the resulting 
means and variances from each (very large) sample. My basic code (here, for df=1) looked like 
this: 
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x <- rchisq(500000, 1) 

mean(x) 

var(x) 

pskew(x) 

hist(x) 

 

Note that I did not bother to “improve” these histograms beyond continuing to use the wide 
aspect ratio I used in Part One. You also need not do improvements here. 
 
I tried the values 1, 2, 5, 10, and 50 for degrees of freedom, resulting in the following table: 
 

df Mean Variance Pearson’s Skew 

1 0.998 1.999 1.157 
2 2.000 4.026 0.918 
5 4.997 9.971 0.617 

10 10.004 20.033 0.441 
50 50.000 100.160 0.198 

 
I am including three of the histograms here: 1 df, 5 df, and 50 df. That is sufficient to show the 
pattern I detected for the skew. 
 
I note that the mean is always almost exactly the same as the degrees of freedom. From that, I 
conclude that the mean of the chi-square distribution is equal to its degrees of freedom. 
Similarly, the variance of the chi-square distribution appears to be twice the degrees of 
freedom. As for the skew, both the statistical evidence of Pearson’s skew index and the 
graphical evidence from the histograms shows that for small degrees of freedom, there is 
positive skew, but as the df increases, the distribution becomes more symmetric. 
 
  



Histogram for df=1:  
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Histogram for df=5: 
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Histogram for df=50: 
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